KEGGREST 패키지를 사용해서 KEGG pathway의 level1,2,3정보를 다운 받을 수 있다.
library(KEGGREST)
# 예제 kegg id
ids <- c("ko00564","ko00680","ko00562","ko03030","ko00561")
# kegg database 다운로드
Kegg_results <- list()
for ( i in ids) {
Kegg_results[[i]] <- tryCatch(keggGet(i), error=function(e) NULL) # https://www.biostars.org/p/366463/
}
# level 1,2,3를 담을 data.frame만들기
keg_ids <- names(Kegg_results)
pathway_tab <- data.frame(row.names = keg_ids)
# for 문을 이용해서 level데이터 가져오기
for (i in keg_ids){
pathway_tab[i, "Level1"] <- strsplit( Kegg_results[[i]][[1]]$CLASS, "; ")[[1]][1]
pathway_tab[i, "Level2"] <- strsplit( Kegg_results[[i]][[1]]$CLASS, "; ")[[1]][2]
pathway_tab[i, "Level3"] <- Kegg_results[[i]][[1]]$PATHWAY_MAP
}
pathway_tab
# Level1 Level2 Level3
# ko00564 Metabolism Lipid metabolism Glycerophospholipid metabolism
# ko00680 Metabolism Energy metabolism Methane metabolism
# ko00562 Metabolism Carbohydrate metabolism Inositol phosphate metabolism
# ko03030 Genetic Information Processing Replication and repair DNA replication
# ko00561 Metabolism Lipid metabolism Glycerolipid metabolism
이렇게 kegg의 pathway에 관련된 데이터를 가져와서 정리하였다.
| 참고
Chen Yang, Aaron Burberry, Xuan Cao, Jiahao Mai, Fabio Cominelli, Liangliang Zhang. (2023). ggpicrust2: an R package for PICRUSt2 predicted functional profile analysis and visualization. arXiv preprint arXiv:2303.10388.
반응형